The calculus of simplex gradients
نویسنده
چکیده
Simplex gradients are widely used in derivative-free optimization. This article clarifies some of the properties of simplex gradients and presents calculus rules similar to that of an ordinary gradient. For example, the simplex gradient does not depend on the order of sample points in the underdetermined and determined cases but this property is not true in the overdetermined case. Moreover, although the simplex gradient is the gradient of the corresponding linear model in the determined case, this is not necessarily true in the underdetermined and overdetermined cases. However, the simplex gradient is the gradient of an alternative linear model that is required to interpolate the reference data point. Also, the negative of the simplex gradient is a descent direction for any interpolating linear function in the determined and underdetermined cases but this is again not necessarily true for the linear regression model in the overdetermined case. In addition, this article reviews a previously established error bound for simplex gradients. Finally, this article treats the simplex gradient as a linear operator and provides formulas for the simplex gradients of products and quotients of two multivariable functions and a power rule for simplex gradients.
منابع مشابه
Using Simplex Gradients of Nonsmooth Functions in Direct Search Methods
It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions in the context of dir...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Letters
دوره 9 شماره
صفحات -
تاریخ انتشار 2015